Unsupervised learning: application to epilepsy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Learning of Shape Complexity: Application to Brain Development

This paper presents a framework for unsupervised learning of shape complexity in the developing brain. It learns the complexity in different brain structures by applying several shape complexity measures to each individual structure, and then using feature selection to select the measures that best describe the changes in complexity of each structure. Then, feature selection is applied again to...

متن کامل

Application of Clustering for Unsupervised Language Learning

We describe a method for automatically learning word similarity from a corpus. We constructed feature vectors for words according to their appearance in different dependency paths in parse trees of corpus sentences. Clustering the huge amount of raw data costs too much time and memory, so we devised techniques to make the problem tractable. We used PCA to reduce the dimensionality of the featur...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Meta-Unsupervised-Learning: A supervised approach to unsupervised learning

We introduce a new paradigm to investigate unsupervised learning, reducing unsupervised learning to supervised learning. Specifically, we mitigate the subjectivity in unsupervised decision-making by leveraging knowledge acquired from prior, possibly heterogeneous, supervised learning tasks. We demonstrate the versatility of our framework via comprehensive expositions and detailed experiments on...

متن کامل

Application of Feature Selection for Unsupervised Learning in Prosecutors' Office

Feature selection is effective in removing irrelevant data. However, the result of feature selection in unsupervised learning is not as satisfying as that in supervised learning. In this paper, we propose a novel methodology ULAC (Feature Selection for Unsupervised Learning Based on Attribute Correlation Analysis and Clustering Algorithm) to identify important features for unsupervised learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Colombiana de Computación

سال: 2019

ISSN: 2539-2115,1657-2831

DOI: 10.29375/25392115.3718